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Matching Problem
Matching Algorithms

Basic Concepts

Graph G = (V , E)
Matching M ⊂ E : Set of independent edges
Augmenting path: Alternating path that starts
and ends with a free vertex
Maximum Matching
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Matching Problem
Matching Algorithms

Kuhn, Hall, Berge (?) bipartite O(nm)
Edmonds (1965) nonbipartite O(n4)
Hopcroft, Karp (1972) bipartite O(

√
nm)

Even, Kariv (1975) nonbipartite O(n2.5)
Micali, Vazirani (1980,1990), nonbipartite O(

√
nm)

Blum(1990,1999)

Feder,Motwani (1990) bipartite O(
√

nm
log 2n2

m
log n )

Goldberg,Karzanov (1995,2002), nonbipartite O(
√

nm
log 2n2

m
log n )

Jungnickel, Paeger(2001),
Löhnertz (2001,2004)

Martin Löhnertz Simpler Matching with Superconcentrators



Introduction
Graph Compression
Superconcentrators

Main Result

The Bipartite Case
The skew-symmetric Case
Matching-Equivalent Subgraphs

1 Introduction

2 Graph Compression
The Bipartite Case
The skew-symmetric Case
Matching-Equivalent Subgraphs

3 Superconcentrators

4 Main Result

Martin Löhnertz Simpler Matching with Superconcentrators



Introduction
Graph Compression
Superconcentrators

Main Result

The Bipartite Case
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Graph Compression
• Replace homogeneous subgraphs by sparser structures
• Goal is not maximum compression but conservation of
certain properties e.g. connectedness

• Replace cliques by stars until m is small.
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Existence of a Large Clique

Theorem 1 (Feder,Motwani 1990)
A bipartite Graph G = (A∪̇B, E) with n2−δ edges contains a
(n1−δ, δ log n

log 2n2
m

) clique.

Notation:
k := δ log n

log 2n2
m

nk := n ∗ (n − 1) ∗ · · · ∗ (n − k + 1)
di := Degree of ai
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Proof of Theorem 1

• Idea: Show there is an ordered set of size k of vertices
from B which have n1−δ common neighbors in A.

• Number all of these sets from S1 to Snk

• Create n × nk matrix M with Mi,j = 1 if all vertices in set j
are neighbors of ai

a1, · · · , an

S1, · · · , Snk
︷ ︸︸ ︷




1 0 0 1 1 1
0 1 1 1 1 1
1 0 1 0 0 1
1 0 0 1 1 1
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a1,··· ,an

S1,··· ,Snk︷ ︸︸ ︷




1 0 0 1 1 1
0 1 1 1 1 1
1 0 1 0 0 1
1 0 0 1 1 1

• N1(Sj) =
∑n

i=0 Mij

• N2(ai) =
∑

j Mij = dk
i

• C =
∑nk

j=1 N1(Sj) =
∑n

i=0 N2(ai)

• =
∑n

i=0 dk
i

Martin Löhnertz Simpler Matching with Superconcentrators



Introduction
Graph Compression
Superconcentrators

Main Result

The Bipartite Case
The skew-symmetric Case
Matching-Equivalent Subgraphs

• Pigeonhole Principle: There is a set Sj0 with N1(Sj0) ≥
C
nk

• C is minimal if all di = m
n ∀i

• C
nk =

Pn
i=1 dk

i
nk ≥ n∗( m

n )k

nk

• ≥ n∗( m
n −k)k

nk note: k = δ log n

log 2n2
m

≤ m
2n

• ≥ n1−δ
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Binary Search Tree for Vertices in V

• binary tree of depth logn

• each leaf corresponds to a vertex in V

• edges labeled with 0 and 1
• Va a ∈ {0,1}≤log n denotes all vertices which are
descendants of vertex reached from root by following
edges as described by a
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Finding a Large Clique

• binary search for each element yi of S∗ = (y1, · · · , yk )

• start with w = ε, V ′ = V\{y1, · · · yi−1}

• calculate N2(Si,w .0) and N2(Si,w .1)
with (Si,a){S = (s1, · · · sn)|

• sl = yl ∀l < i
• si ∈ V ′

a
• sl ∈ V ′\{si} ∀l > i

}
• append 0 or 1 to w depending on which one was larger
if |w | < logn goto step 3

• let yi be the only vertex in Va

V ′ := V ′\yi
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Making the Nonbipartite Problem Bipartite

• replace each vertex v by two vertices [v , A] and [v , B]

• connect [u, A] to [v , B] iff (u, v) ∈ E

• new Graph GB is bipartite
• matching MB in GB can be transformed to matching in M
if ([u, A], [v , B]) ∈ MB ⇔ ([v , A], [u, B]) ∈ MB

• standard maxflow/matching algorithms do not guarantee
this

• Graphs are called skew symmetric as [u, A]↔ [u, B] is
involutoric automorphism
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Finding Skew-Symmetric Matchings

• general skew symmetric flow algorithms (Jungnickel &
Paeger 2001,Goldberg & Karzanov 2002)

• specialized matching algorithm (Blum 1999)
Common idea: choose only augmenting paths not containing
[u, A] and [u, B] for any u
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Symmetric Compression

Definition 2
A clique decomposition is called “symmetric” if for each biclique
C the symmetric biclique is also contained.

Lemma 3 (Goldberg, Karzanov 2002)
A symmetric decomposition can be found in the same time as a
normal decomposition.
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Stars Work for Flow Algorithms
• At most 1 unit of flow may pass each vertex that is not a
center of a star.

• This cannot be transferred to matching algorithms.
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CME-Graphs

Definition 4
A Graph GS = (VL∪̇VM ∪̇VR) is matching-equivalent to biclique
(VL, VR) if

• for each matching in GS covering VM the number of
matching covered vertices in VL and VR is equal

• for pair of sets (V ′
L ⊂ VL, V ′

R ⊂ VR), |V ′
L| = |V ′

R| there is a
matching covering exactly VM ∪ V ′

R ∪ V ′
L

i.e. one can replace a clique by a CME graph without disturbing
the perfect matching properties of the rest of the graph
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There are ’Magic’ Graphs

Definition 5
A m, n concentrator is a graph
(VI∪̇VM ∪̇VR, E), |VI | = m, |VR| = n where for every subset
A ⊂ VI of size n there ar n node disjoint paths from A to VR

Definition 6
A n, n-superconcentrator is a graph GSU = (VI∪̇VM ∪̇VO, E) in
which for each pair of subsets V ′

I ⊂ VI , V ′
O ⊂ VO,

r = |VI | = |VO| there are r vertex disjoint paths from a vertex
from VI to a vertex from VO
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There are Linear Size Superconcentrators

• recursive construction
• sub-superconcentrators are smaller by a constant fraction

S’ ......... ...

... ...
C C’
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Construction of Concentrators

• Probabilistic Construction Pippenger (1972): 39n

• Deterministic Construction: Gabber,Galil (1979): 504n

→ uses 7 simple permutations for the construction, but proof is
measure-theoretic and applies residual-calculus
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Lemma 7
There are linear sized CME-graphs.

Theorem 8
In a general graph a maximum cardinality matching can be
found in time

O(
√

nm
log 2n2

m

logn
)
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Sketch of Proof of Lemma 7
• replace each vertex v in the superconcentrator by vertices

vi , vo and name set of these nodes VM

• vi gets ”incoming edges”, vo ”outgoing” edges, add edges
(vi , vo)

• Add set VL = {vL
1 , · · · vL

n} and connect each to the vi of an
input node

• Add set VR = {vR
1 , · · · vR

n } and connect each to the vo of
an output node

R

......

... ...

...

... ...... ... ...

...

...S’ C’C

VL V
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Sketch of Proof of Lemma 7

Lemma 9
The Construction yields an CME-Graph

Property 1: for each matching in GS covering VM the number of
matching covered vertices in VL and VR is equal

• Graph is bipartite with balanced partitions
• in such graphs the number of vertices covered in each
partition are equal

• VL and VR belong to different partitions and are of same
size

• VM is evenly split and completely covered so in both
partitions the number of covered vertices from VM is equal.
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Sketch of Proof of Lemma 9
Property 2: for each pair of sets (V ′

L ⊂ VL, V ′
R ⊂ VR),

|V ′
L| = |V ′

R| there is a matching covering exactly VM ∪ V ′
R ∪ V ′

L
• let V ′

L = {vL
1 , · · · , vL

r } and V ′
R = {vR

1 , · · · , vR
r }

• There are r paths P1, · · ·Pr through the superconcentrator
connecting {vL

1 , · · · , vL
r } to {vR

1 , · · · vR
r }

• for each pair (vi , vo) not lying on a Pi match vi to vo

• for each Pi = {pL
j , p1i , p1o, p2i , · · · , pq−1

o , pq
i , pq

o , pR
h } match pj

o

to pj+1
i ∀1 ≤ j < q, pL

j to p1i and pq
o to pR

h .

... S’ C’C... ... ...... ......

...... ......

...
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Proof of the Main Theorem

Definition 10
Let GC be the graph created by replacing each clique in a clique
packing according to Feder and Motwani by an CME-subgraph.

Lemma 11
It is possible to reconstruct a maximum matching in the original
graph G from a maximum matching in GC in linear time.
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Equal Deficiency

Lemma 12
The number of vertices not covered by a maximum matching
M ′ in GC is smaller or equal to the number of vertices not
covered by a maximum matching M in G.

Proof: For each Clique there is a matching in the
corresponding CME-Graph covering the whole ”interior” of this
graph VM and exactly the same number of vertices from its VL

and VR. So there is a matching in GC leaving at most as many
vertices uncovered as M.
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Reconstruction

Lemma 13
Given an CME-Graph GS and a maximum Matching M ′ in this
Graph it is possible to find a matching M ′′ of same size, that
covers the same number of vertices in each VL and VR and
does not cover other vertices in VL or VR than M ′.

Proof: Let V ∗
L and V ∗

R be the vertices covered by M ′ and
|V ∗

L | < |V ∗
R|. Choose any subset of size |V ∗

L | of V ∗
R and create

the matching M ′′ as the matching requested by property 2.
Assume |M ′| > |M ′′|. Look at M ′∆M ′′. As M ′ was maximum
there must be an augmenting path P∗ starting and ending in
VR. Then M ′′ ⊕ P∗ is a matching covering VM and a different
number of vertices in VL and VR. Contradiction.
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Main Result

Theorem 14
In a general graph a maximum cardinality matching can be
found in time

O(
√

nm
log 2n2

m

logn
)
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Search Structures

• Compression based on deterministically created
concentrators accelerates algorithm if n > 2504

• Method does not work for nonsymmetric compression
• Use cliques only to accelerate searches and do other
operations on original graph

• Broader concept: Search Structures, e.g. non disjoint
cliques
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