Simpler Compression Based Algorithms for the Nonbipartite Matching Problem Using Superconcentrators

Martin Löhnertz

Institute of Computer Science V University of Bonn

26.1.2005

Martin Löhnertz Simpler Matching with Superconcentrators

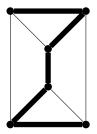
- 2 Graph Compression
- **3** Superconcentrators
- 4 Main Result

Matching Problem Matching Algorithms

- 2 Graph Compression
- 3 Superconcentrators
- 4 Main Result

Matching Problem Matching Algorithms

Basic Concepts



Graph G = (V, E)Matching $M \subset E$: Set of independent edges Augmenting path: Alternating path that starts and ends with a free vertex Maximum Matching

Matching Problem Matching Algorithms

Kuhn, Hall, Berge (?)	bipartite	$\mathcal{O}(nm)$
Edmonds (1965)	nonbipartite	$\mathcal{O}(n^4)$
Hopcroft, Karp (1972)	bipartite	$\mathcal{O}(\sqrt{n}m)$
Even, Kariv (1975)	nonbipartite	$\mathcal{O}(n^{2.5})$
Micali, Vazirani (1980,1990),	nonbipartite	$\mathcal{O}(\sqrt{n}m)$
Blum(1990,1999)		
Feder,Motwani (1990)	bipartite	$\frac{\mathcal{O}(\sqrt{n}m\frac{\log\frac{2n^2}{m}}{\log n})}{\mathcal{O}(\sqrt{n}m\frac{\log\frac{2n^2}{m}}{\log n})}$
Goldberg,Karzanov (1995,2002),	nonbipartite	$\mathcal{O}(\sqrt{n}m\frac{\log \frac{2n^2}{m}}{\log n})$
Jungnickel, Paeger(2001), Löhnertz (2001,2004)		

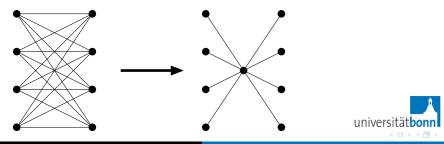
The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

2 Graph Compression The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Graph Compression

- Replace homogeneous subgraphs by sparser structures
- Goal is not maximum compression but conservation of certain properties e.g. connectedness
- Replace cliques by stars until *m* is small.



The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Existence of a Large Clique

 $d_i := \text{Degree of } a_i$

Theorem 1 (Feder, Motwani 1990)

A bipartite Graph $G = (A \cup B, E)$ with $n^{2-\delta}$ edges contains a $(n^{1-\delta}, \frac{\delta \log n}{\log \frac{2n^2}{m}})$ clique. Notation: $k := \frac{\delta \log n}{\log \frac{2n^2}{m}}$ $n^{\underline{k}} := n * (n-1) * \cdots * (n-k+1)$

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Proof of Theorem 1

- Idea: Show there is an ordered set of size k of vertices from B which have n^{1-δ} common neighbors in A.
- Number all of these sets from S₁ to S_{nk}
- Create $n \times n^{\underline{k}}$ matrix *M* with $M_{i,j} = 1$ if all vertices in set *j* are neighbors of a_i

$$a_1, \cdots, a_n \begin{cases} S_1, \cdots, S_{n^{\underline{k}}} \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{cases}$$

universität

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

$$a_{1}, \cdots, a_{n} \begin{cases} S_{1}, \cdots, S_{n^{\underline{k}}} \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \end{cases}$$

•
$$N_1(S_j) = \sum_{i=0}^n M_{ij}$$

• $N_2(a_i) = \sum_j M_{ij} = d_i^k$
• $C = \sum_{j=1}^{n^k} N_1(S_j) = \sum_{i=0}^n N_2(a_i)$
• $= \sum_{i=0}^n d_i^k$

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

- Pigeonhole Principle: There is a set S_{i_0} with $N_1(S_{i_0}) \geq \frac{C}{n^k}$
- C is minimal if all $d_i = \frac{m}{n} \forall i$

•
$$\frac{C}{n^{k}} = \frac{\sum_{i=1}^{n} d_{i}^{k}}{n^{k}} \ge \frac{n*(\frac{m}{n})^{k}}{n^{k}}$$

•
$$\ge \frac{n*(\frac{m}{n}-k)^{k}}{n^{k}} \quad \text{note: } k = \frac{\delta \log n}{\log \frac{2n^{2}}{m}} \le \frac{m}{2n}$$

•
$$> n^{1-\delta}$$

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Binary Search Tree for Vertices in V

- binary tree of depth log n
- each leaf corresponds to a vertex in V
- edges labeled with 0 and 1
- V_a a ∈ {0, 1}^{≤log n} denotes all vertices which are descendants of vertex reached from root by following edges as described by a

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Finding a Large Clique

- binary search for each element y_i of $S^* = (y_1, \cdots, y_k)$
- start with $w = \epsilon, V' = V \setminus \{y_1, \cdots, y_{i-1}\}$
- calculate $N_2(S_{i,w.0})$ and $N_2(S_{i,w.1})$ with $(S_{i,a})\{S = (s_1, \cdots s_n)|$ • $s_l = y_l \forall l < i$ • $s_i \in V'_a$ • $s_l \in V' \setminus \{s_i\} \forall l > i$ }
- append 0 or 1 to *w* depending on which one was larger if |*w*| < log *n* goto step 3
- let y_i be the only vertex in V_a
 V' := V'\y_i

Making the Nonbipartite Problem Bipartite

- replace each vertex v by two vertices [v, A] and [v, B]
- connect [u, A] to [v, B] iff $(u, v) \in E$
- new Graph G_B is bipartite
- matching M_B in G_B can be transformed to matching in M if $([u, A], [v, B]) \in M_B \Leftrightarrow ([v, A], [u, B]) \in M_B$
- standard maxflow/matching algorithms do not guarantee this
- Graphs are called skew symmetric as [*u*, *A*] ↔ [*u*, *B*] is involutoric automorphism

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Finding Skew-Symmetric Matchings

- general skew symmetric flow algorithms (Jungnickel & Paeger 2001,Goldberg & Karzanov 2002)
- specialized matching algorithm (Blum 1999)

Common idea: choose only augmenting paths not containing [u, A] and [u, B] for any u

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Symmetric Compression

Definition 2

A clique decomposition is called "symmetric" if for each biclique *C* the symmetric biclique is also contained.

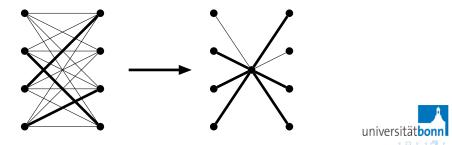
Lemma 3 (Goldberg, Karzanov 2002)

A symmetric decomposition can be found in the same time as a normal decomposition.

The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

Stars Work for Flow Algorithms

- At most 1 unit of flow may pass each vertex that is not a center of a star.
- This cannot be transferred to matching algorithms.



The Bipartite Case The skew-symmetric Case Matching-Equivalent Subgraphs

CME-Graphs

Definition 4

A Graph $G_S = (V_L \dot{\cup} V_M \dot{\cup} V_R)$ is matching-equivalent to biclique (V_L, V_R) if

- for each matching in G_S covering V_M the number of matching covered vertices in V_L and V_R is equal
- for pair of sets (V'_L ⊂ V_L, V'_R ⊂ V_R), |V'_L| = |V'_R| there is a matching covering exactly V_M ∪ V'_R ∪ V'_L

i.e. one can replace a clique by a CME graph without disturbing the perfect matching properties of the rest of the graph

Definitions Construction of Concentrators

- 2 Graph Compression
- 3 Superconcentrators Definitions Construction of Concentrators

Definitions Construction of Concentrators

There are 'Magic' Graphs

Definition 5

A m, n concentrator is a graph $(V_l \cup V_M \cup V_R, E), |V_l| = m, |V_R| = n$ where for every subset $A \subset V_l$ of size n there ar n node disjoint paths from A to V_R

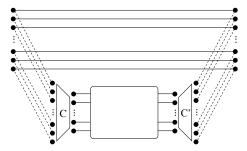
Definition 6

A *n*, *n*-superconcentrator is a graph $G_{SU} = (V_I \cup V_M \cup V_O, E)$ in which for each pair of subsets $V'_I \subset V_I, V'_O \subset V_O$, $r = |V_I| = |V_O|$ there are *r* vertex disjoint paths from a vertex from V_I to a vertex from V_O

Definitions Construction of Concentrators

There are Linear Size Superconcentrators

- recursive construction
- sub-superconcentrators are smaller by a constant fraction



Definitions Construction of Concentrators

Construction of Concentrators

- Probabilistic Construction Pippenger (1972): 39n
- Deterministic Construction: Gabber, Galil (1979): 504n

 \rightarrow uses 7 simple permutations for the construction, but proof is measure-theoretic and applies residual-calculus

CME Graphs from Superconcentrators proof of the main theorem

- 2 Graph Compression
- 3 Superconcentrators

4 Main Result CME Graphs from Superconcentrators proof of the main theorem

CME Graphs from Superconcentrators proof of the main theorem

Main Result

Lemma 7 There are linear sized CME-graphs.

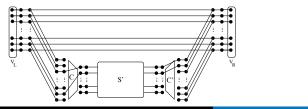
Theorem 8

In a general graph a maximum cardinality matching can be found in time

 $\mathcal{O}(\sqrt{n}m\frac{\log\frac{2n^2}{m}}{\log n})$

Sketch of Proof of Lemma 7

- replace each vertex v in the superconcentrator by vertices v_i, v_o and name set of these nodes V_M
- *v_i* gets "incoming edges", *v_o* "outgoing" edges, add edges (*v_i*, *v_o*)
- Add set $V_L = \{v_1^L, \cdots v_n^L\}$ and connect each to the v_i of an input node
- Add set V_R = {v₁^R, · · · v_n^R} and connect each to the v_o of an output node



CME Graphs from Superconcentrators proof of the main theorem

Sketch of Proof of Lemma 7

Lemma 9

The Construction yields an CME-Graph

Property 1: for each matching in G_S covering V_M the number of matching covered vertices in V_L and V_R is equal

- Graph is bipartite with balanced partitions
- in such graphs the number of vertices covered in each partition are equal
- V_L and V_R belong to different partitions and are of same size
- *V_M* is evenly split and completely covered so in both partitions the number of covered vertices from *V_M* is equal.

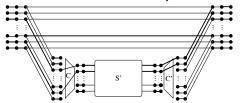
universitätbo

CME Graphs from Superconcentrators proof of the main theorem

Sketch of Proof of Lemma 9

Property 2: for each pair of sets $(V'_L \subset V_L, V'_R \subset V_R)$,

- $|V_L'| = |V_R'|$ there is a matching covering exactly $V_M \cup V_R' \cup V_L'$
 - let $V_L' = \{v_1^L, \cdots, v_r^L\}$ and $V_R' = \{v_1^R, \cdots, v_r^R\}$
 - There are *r* paths *P*₁, ... *P_r* through the superconcentrator connecting {*v*^L₁, ..., *v*^L_{*r*}} to {*v*^R₁, ... *v*^R_{*r*}}
 - for each pair (v_i, v_o) not lying on a P_i match v_i to v_o
 - for each $P_i = \{p_j^L, p_i^1, p_o^1, p_i^2, \cdots, p_o^{q-1}, p_i^q, p_o^q, p_h^R\}$ match p_o^j to $p_i^{j+1} \forall 1 \le j < q, p_j^L$ to p_i^1 and p_o^q to p_h^R .



CME Graphs from Superconcentrators proof of the main theorem

Proof of the Main Theorem

Definition 10

Let G_C be the graph created by replacing each clique in a clique packing according to Feder and Motwani by an CME-subgraph.

Lemma 11

It is possible to reconstruct a maximum matching in the original graph G from a maximum matching in G_C in linear time.

CME Graphs from Superconcentrators proof of the main theorem

Equal Deficiency

Lemma 12

The number of vertices not covered by a maximum matching M' in G_C is smaller or equal to the number of vertices not covered by a maximum matching M in G.

Proof: For each Clique there is a matching in the corresponding CME-Graph covering the whole "interior" of this graph V_M and exactly the same number of vertices from its V_L and V_R . So there is a matching in G_C leaving at most as many vertices uncovered as M.

CME Graphs from Superconcentrators proof of the main theorem

Reconstruction

Lemma 13

Given an CME-Graph G_S and a maximum Matching M' in this Graph it is possible to find a matching M'' of same size, that covers the same number of vertices in each V_L and V_R and does not cover other vertices in V_L or V_R than M'.

Proof: Let V_L^* and V_R^* be the vertices covered by M' and $|V_L^*| < |V_R^*|$. Choose any subset of size $|V_L^*|$ of V_R^* and create the matching M'' as the matching requested by property 2. Assume |M'| > |M''|. Look at $M' \Delta M''$. As M' was maximum there must be an augmenting path P^* starting and ending in V_R . Then $M'' \oplus P^*$ is a matching covering V_M and a different number of vertices in V_L and V_R . Contradiction.

CME Graphs from Superconcentrators proof of the main theorem

Main Result

Theorem 14

In a general graph a maximum cardinality matching can be found in time

$$\mathcal{O}(\sqrt{n}m\frac{\log\frac{2n^2}{m}}{\log n})$$

Search Structures

Search Structures

- Compression based on deterministically created concentrators accelerates algorithm if $n > 2^{504}$
- Method does not work for nonsymmetric compression
- Use cliques only to accelerate searches and do other operations on original graph
- Broader concept: Search Structures, e.g. non disjoint cliques

